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Abstract—The ubiquitous screen content images (SCIs) play
a significant role in various scenarios currently. However, most
SCIs captured by consumer devices are frequently corrupted
with distortions, especially contrast distortion. Unlike the natural
images, SCIs are composed of text, graphics and natural scene
pictures so that traditional image enhancement methods are not
suitable for these compound images. Therefore, we innovatively
proposed an adaptive strategy for enhancing SCIs in this paper.
Firstly, we devised a segmentation method to divide SCI into text
and pictorial regions. Next, the famous guided image filter (GIF)
with big and small kernel sizes served as unsharpness masking
for processing different regions adaptively. For verifying perfor-
mance, the proposed method was tested on recently prevalent SCI
datasets including SIQAD, and Webpage Dataset. Experimental
results indicate that the proposed approach outperforms state-
of-the-art methods in most SCIs with flat background.

Index Terms—Screen content image, image segmentation, guid-
ed filter, unsharpness masking, autoregressive model

I. INTRODUCTION

Screen content image (SCI) is a crucial medium for various
applications since it’s informative and convenient. Unfortu-
nately, most SCIs are captured by normal devices like cell-
phone and tablet which corrupt the SCIs with distortions. To
the best of our knowledge, image enhancement strategy dedi-
cated for SCI has not been systematically investigated before.
Besides, traditional methods [1-4] are not appropriate for SCIs
since SCIs always contain steep edges in text region, chaotic
textural detail in pictorial region, and significant boundaries
between pictorial region and background. Therefore, we at-
tempted to design a robust strategy under the motivation of
improving diverse SCIs’ perceptual quality [17, 18].

The accurate and robust SCI segmentation method is neces-
sary for SCI related researches, because any tiny segmentation
fault will produce severe artifacts so as to destroy integral
quality. In general, mainstream SCI segmentation methods
can be classified as two categories, i.e. block-based methods
[5,6] and layer-based methods[7,8]. However, these methods
paid attention to extracting texture details from the SCI. And
for SCI enhancement task, these methods will excessively
enhance the image texture and boundaries so as to produce
halo artifacts. Hence, firstly, we came up with an accurate and

robust segmentation method suitable for various SCIs. Then
we proposed an adaptive strategy based on GIF [4] to process
different regions respectively. The proposed flowchart is shown
in Fig.1 for viewers’ conveniences.

Fig. 1. Flowchart of the proposed method.

This paper is organized as follows. We first introduce the
proposed layer-based segmentation strategy in section 2. Then
we further introduce the enhancement method. In section 3,
we compare the proposed method with other methods in terms
of classification accuracy and SSIM.

II. PROPOSED ENHANCEMENT ALGORITHM

A. Layer-based Segmentation Strategy

We innovatively proposed a robust layer-based SCI segmen-
tation method suitable for diverse SCI enhancement tasks in
this section. The proposed method consists of two steps, coarse
segmentation step and refinement step.

Considering that the block-based methods [5,6] introduce
serious blockness distortions in SCI enhancement tasks, we
designed a layer-based method to divide SCI into five lay-
ers. Specifically, observation shows that most SCIs consist
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of pictorial layer, text layer, and smooth background layer.
Furthermore, pictorial layer consists of smooth pictorial layer
(SPL) and textural pictorial layer (TPL). Similarly, text layer
also contains smooth text layer (STL) and textural text layer
(TTL). Consequently, SPL, TPL, STL, TTL and smooth
background layer (SBL) make up of a complete SCI without
overlap. In coarse segmentation, we extracted TPL, TTL, and
SBL by spatial filtering technique as follows.

A consensus has been reached that text layer contains a
lot of short steep edges, while pictorial layer contains many
chaotic texture details and long boundaries. Considering this
heuristic information, we adopted the autoregressive (AR)
model [9] and GIF to process the SCI respectively, because
the AR model has good texture-preserving ability while the
GIF is good at preserving edges. The AR model specifies that
the output depends linearly on its own previous variable value
and on a stochastic term. In digital image processing, this
relationship can be expressed by

yi = α× γk
(yi) + εi, (1)

where yi is the pixel value to be processed; α = {α1, ..., αk}
is the vector of AR coefficients; γk(yi) means the k member
neighborhood vector of yi; εi is the difference between ground
truth and predicted value. The parameter α can be solved via
the linear system:

α̂ = argmin
α

||y − Y α||2, (2)

where Y (i, :) = γk(yi) and y = (y1, y2, ..., yk). We can
solve this linear system by least square method and obtain
the approximate solution as α̂ = (Y TY )

−1
Y Ty. The AR

model can protect pictorial details well, but it performs poorly
on steep edges of text. This property is elaborated in zoom-in
trapped by red rectangle in Fig.2 (c). The GIF can generate
output according to the guide image. As Fig.2(d), the GIF
behaves as an efficient edge-preserving smoothing operator
when the guide image is identical to the original image.

(a) (b) (c) (d)

Fig. 2. (a)original SCI: red rectangle is detail of pictorial region, and green rectangle
is detail of text region.(b)zoom-in of regions trapped by red and green rectangles from
(a).(c)zoom-in of image processed by AR model.(d)zoom-in of image processed by GIF.

We calculated the similarity map S1 between the AR
model filtering result and the original image by famous SSIM
metric[12]. In similarity map S1, higher values mean that the
AR model filtering result has the similar values with original
image in these positions. Videlicet, the lower values represent
regions with severe distortions, i.e. coarse textural text layer
(TTL). Therefore, the TTL can be obtained by 1 − N(S1),
where N is a normalization function to make sure the S1

is from 0 to 1. Analogously, the TPL can be generated by
1 −N(S2), where S2 is the similarity map between the GIF

filtering result and the original image. Notably, TTL also
contains some sharp pictorial textural details which are similar
to steep edges of text region, and vise versa. For obtaining
pure TTL, we emphasized TTL, while suppressed TPL by
equation 3. And the same applies to TPL.{

TTL = Binary(Max(TTL− w × TPL, 0)),
TPL = Binary(Max(TPL− w × TTL, 0)),

(3)

where weighting coefficient w is set as 2 based on experimen-
tal data. Moreover, experimental data shows that most SCIs,
such as webpages and slides, have smooth backgrounds in a
few base colors. Hence, we found out the most frequent base
colors accounting for at least 20% of all pixels, so that we
could extract SBL whose pixels are in base colors. Heretofore,
we obtained TTL, TPL, and SBL coarsely.

For avoiding severe artifacts in SCI enhancement tasks, we
were supposed to find out the explicit boundaries between pic-
tures and background, especially for SCIs containing multiple
pictures. However, coarse segmentation only provides textural
details of different regions, which are insufficient to determine
the exact locations of each pictures. Besides, remaining STL
and SPL are difficult to differentiate because they have similar
color and variation information. Consequently, we proposed
a refinement strategy to accurately determine every pictures’
positions one by one.

(a) (b) (c) (d)

Fig. 3. (a) Vertical and horizontal long-narrow spatial kernels. (b) Right angle corner
map generated by (a). (c) Binary map including STL, SPL and TPL of the original
SCI. (d) Red points represent right angle corners extracted by the proposed method.

(a) (b) (c) (d)
Fig. 4. (a) A picture patch of Fig.3 (d). (b) Zoom-in of area trapped by red rectangle
in (a). (c) Filtering result of (b) by V LK. (d) Filtering result of (c) by HLK.

We devised a right angle corner detection method using
two long-narrow spatial kernels shown in Fig.3(a). Firstly, we
adopted 3 × 13 V LK as gradient filter to process original
SCI. Next, the filtering result of V LK was processed by
13 × 3 HLK so as to generate Fig.3(b). Obviously, the
filtering operation by V LK and HLK exactly produced four
smooth square blocks in the four vertices of each picture. We
analyzed the reason for this situation as follows. For most
SCIs, there are sharp boundaries between pictures and smooth
background, especially for pictures having strong contrast with
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background, such as dark picture and white background shown
as Fig.4(a). Therefore, V LK produced high gradient values
in horizontal boundaries of each picture, as shown in Fig.4(c).
Then we adopted HLK to process Fig.4(c) and obtained a
smooth square block as Fig.4(d). Furthermore, based on abun-
dant experimental data, we empirically drew three important
properties from these square blocks as equations 4,

|Mean(block)| > 2×Mean(I),

Std(block) <
1

4
× Std(I),

Symbol(block) = 1,

(4)

where block represents the square block, I is the original SCI,
Mean represents mean value, Std is standard deviation, and
Symbol = 1 means that all pixels of the block have the same
signs, i.e. homogeneity. And the block size is 13 × 13. We
extracted right angle corners as Fig.3(d). Specifically, Fig.3(c)
is the binary map containing STL, SPL and TPL of Fig.3(d).
After obtaining TPL, TTL, and SBL in coarse segmentation
step, we can get Fig.3(c) easily by 1−TTL−SBL. We found
that each picture area of Fig.3(c) approximates to an inerratic
connected region. Heretofore, we designed a region growing
method with right angle corner points serving as growing
seeds. Concretely speaking, we adopted a 20 × 20 window,
and slid this window starting from growing seed on the
Fig.3(c). The break condition is P (window) < 95%, where
P (window) represents the percentage of positive pixels of the
window. Eventually, we found out the coordinate values of
upper-left and bottom-right corners of every picture precisely,
as shown in Fig.5.
B. Adaptive Enhancement Strategy

We devised an adaptive enhancement strategy dedicated
for various SCIs. Notably, most SCIs contain either single
picture or multi-pictures like Fig.5. Moreover, the multi-
pictures always contain different levels of contrast distortions.
Taking Fig.6 (a) for instance, the bottom-right picture is in
fine contrast, while the others are in low contrast. Firstly, we
simply estimated the histogram of each picture using [2], and
found out the severely distorted images in low contrast, so as
to avoid over-enhancing pictures in fine contrast.

Secondly, we adopted the GIF serving as unsharpness
masking for improving different regions. Concretely speaking,
the original image is processed by spatial low-pass filter
to generate the smoothed one, then the detail version is
obtained by point-by-point subtraction of original image and
its associated smoothed version. Furthermore, the detail image
is amplified and added back to the original image to generate
the final enhanced image. Specifically, GIF behaves as a quick
edge-preserving smoothing operator when the guide image is
identical to the original image. Hence, the GIF has the edge-
preserving ability compared to the Gaussian filter. Moreover,
in comparison to the bilateral filter, the GIF performs better
near edges. The GIF also is of low computation complexity.
Therefore, we improved the GIF to be an adaptive method for
satisfying real-time SCI related enhancement tasks.

Although the unsharpness masking is a powerful tool for
image enhancement, it produces some perceptually harmful

artifacts such as halo effect around text and boundaries like
Fig.6(d). The halo effect always happens in steep edges where
light changes to dark or vise versa. Especially for small-
scale edge details, when we use the big low-pass filter kernel
(radius r), the surrounding pixels of tiny edge details will
be mistakenly extracted as high frequency component, and
be added back to the original image, so that the surrounding
region around tiny edge details will be over enhanced. Besides,
for SCIs containing coloured background, the halo effect looks
more obvious. The same distortion appears on the boundaries
between pictorial region and background. Conversely, small
kernel will amplify noise of pictorial regions as Fig.6 (e).
Hence, we improved the GIF as follows :

ak =

1
|w|

∑
i∈wk

Iipi − µkpk

σ2
k + ε

, bk = pk − akµk, (5)

{
w = 16× 16, ε = 0.1

2
Ii, pi ∈ picture,

w = 2× 2, ε = 0.05
2

Ii, pi ∈ text,
(6)

qi = aiIi + bi, o = (I − q)× α+ q, (7)

where p is the original SCI, I = p is the guide image,
|w| is the number of pixels in window wk, and r = |w| 12
is the kernel radius. µk and σ2

k are mean and variance of
I in window |wk|. ε is a regularization parameter. q is the
filtering result of the GIF. α is the amplification coefficient for
enhancing high frequency component. o is the final enhanced
result. The proposed adaptive strategy guarantees the satisfying
enhancement performance under the premise of no artifacts.

III. EXPERIMENTAL RESULTS

We adopted the prevalent SIQAD [10], and Webpage
Dataset [11] as test datasets. SIQAD consists of 20 source
SCIs and 140 distorted images with contrast change, and
Webpage Dataset includes 149 SCIs. The segmentation results
are shown in Fig.6. Most segmentation results are accurate,
and we obtained the specific location of each picture from the
same SCI. But one picture of Fig.5(c) has not been extracted,
because there is little textual detail of this picture, and its base
color is similar to the background. We extracted the pictorial
regions and text regions of test datasets manually as ground
truth, and calculated the average precision and recall of SPEC
[5] and the proposed segmentation method as Table 1.

TABLE I
THE ACCURACY AND RECALL OF SEGMENTATION METHODS

SPEC (BLOCK-BASED) vs THE PROPOSED METHOD (LAYER-BASED)

Method Test Dataset Precision Recall
SPEC [5] SIQAD 0.64 0.7962

Proposed method SIQAD 0.81 0.8938
SPEC [5] WebpageDataset 0.58 0.6645

Proposed method WebpageDataset 0.69 0.7245
Subjective performances of different methods are shown in

Fig.6. Notably, Fig.6(a) contains six pictures, and the bottom-
right one is in fine contrast, while the others are underexposed.
Obviously, the HMF [15] and GHMF [16] methods destroy
the integral quality severely, because they process the image
from a global perspective, so that Fig.6(b-c) are polarized.
In Fig.6(d), there are severe halo artifacts around text, and
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(a) (b) (c) (d)

Fig. 5. Segmentation results for various SCIs.

(a) SCI with contrast distortions (b) HMF (c) GHMF

(d) GIF using big kernel (e) GIF using small kernel (f) The proposed method

Fig. 6. Enhancement results of different methods for SCI in Webpage Dataset.

TABLE II
THE QUALITY SCORES OF ENHANCEMENT METHODS

Method Test Dataset SSIM RWQMS QMC
HMF SIQAD 0.7337 0.8831 0.1845

GHMF SIQAD 0.6973 0.8825 0.2272
GIF(big r) SIQAD 0.8836 0.8675 0.0222

GIF(small r) SIQAD 0.8189 0.9037 0.2835
Proposed SIQAD 0.9363 0.9278 0.0009

HMF WebpageDataset 0.8189 0.8722 0.2064
GHMF WebpageDataset 0.7919 0.8548 0.2672

GIF(big r) WebpageDataset 0.7702 0.7364 0.0237
GIF(small r) WebpageDataset 0.7483 0.9016 0.0515

Proposed WebpageDataset 0.8959 0.9370 0.0004

boundaries between pictures and background (refer to the
long orange block and the boundaries of pictures in Fig.6(d)).
Moreover, the text regions are corrupted with colour distor-
tions, and the bottom-right picture is over-enhanced. Besides,
GIF with small kernel amplifies noise in pictorial regions
as Fig.6(e). The proposed method improves the contrast of
underexposed pictures, and introduces no artifacts. In addition,
the text regions are protected well. We also used objective
full-reference image quality metric SSIM [12], the reduced-
reference SCI quality metric RWQMS [13], and quality metric
of contrast QMC [14] to evaluate algorithm performance quan-
titatively. Notably, both SIQAD and Webpage Dataset provide

reference images without distortion, so that we can calculate
the SSIM easily. RWQMS is an ultramodern specifically
designed quality metric for SCIs, and is qualified to estimate
SCI perceptual quality credibly. Considering that the contrast
change is the most obvious distortion here, we also calculated
the QMC dedicated for contrast distortion. Specifically, big
SSIM and RWQMS scores mean good quality, while small
QMC score means good quality. The quality scores are listed
in Table 2.

IV. CONCLUSION

We innovatively proposed an adaptive enhancement strategy
for various frequently-used SCIs. Firstly, we designed a robust
layer-based segmentation to divide SCIs into pictorial regions
and text regions accurately. Next, the GIF with different kernel
sizes serving as unsharpness masking were used to process
different regions respectively. Experimental results show that
the proposed method is qualified to process diverse SCIs, and
is the best choice for SCI enhancement tasks.
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